Welcome, Guest. Please login or register.
April 25, 2024, 04:41:15 pm

Login with username, password and session length


Members
  • Total Members: 37652
  • Latest: Han2024
Stats
  • Total Posts: 773291
  • Total Topics: 66348
  • Online Today: 697
  • Online Ever: 5484
  • (June 18, 2021, 11:15:29 pm)
Users Online
Users: 1
Guests: 683
Total: 684

Welcome


Welcome to the POZ Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Do I Have HIV?” posting guidelines. Click here for posting guidelines pertaining to all other POZ community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: Potential drug molecule shows enhanced anti-HIV activity  (Read 3061 times)

0 Members and 1 Guest are viewing this topic.

Offline hopeisvague

  • Member
  • Posts: 12
Potential drug molecule shows enhanced anti-HIV activity
« on: August 13, 2012, 01:16:22 pm »
Maybe a new entry inhibitor, targeting CXCR4, similar to Maraviroc (while Selzentry targets at CCR5) would be invented later... Hope that co-administration of these two types of entry inhibitors would deny HIV entry into T-cells totally.

Are there any other ways for HIV to invade cells? If not, then we're getting closer to  have total control over the infection... except those latent reservoirs. Will vorinostat/bryologues/prostratin/cortistatin A/disulfiram do the remaining job?
 
http://medicalxpress.com/news/2012-08-potential-drug-molecule-anti-hiv.html

August 9, 2012

Researchers from Munich and Naples have shown that minimal modification of a synthetic peptide with anti-HIV activity results in a new compound with more than two orders of magnitude higher binding affinity to the chemokine receptor CXCR4 and greatly improved anti-HIV activity. This could be a step toward the design of new, more effective drugs against AIDS, inflammatory diseases, and some forms of cancer.

Different strains of HIV-1 use either the chemokine receptor CCR5 or CXCR4 for entry into immune cells. While drugs that block usage of CCR5 by the virus are already available for anti-HIV therapy, no drugs have been approved that prevent the virus from using the CXCR4 receptor. Because the new cyclic peptide may be used to block CXCR4, it is a promising new drug candidate to block HIV-1 infections.

An international, interdisciplinary team including researchers in pharmaceutical radiochemistry and chemistry at the Technische Universität München (TUM), a group of molecular modelers at the University of Naples, and virologists at the Helmholtz Zentrum München reported the results in Angewandte Chemie International Edition. This work was initiated by the radiochemists and organic chemists at TUM, who realized that their approach to modifying peptides as high-affinity CXCR4 ligands for imaging of cancers also has the potential to open a whole new area of drug research.

The researchers used a smart trick to augment both the binding affinity and the anti-HIV activity of an already known lead structure: They shifted one of the important side chains from the carbon to a neighboring nitrogen, thus fixing the skeleton of the molecule to present its binding groups in an improved orientation.

The cyclic structure of the peptide, with one unnatural D-amino acid (the mirror image of the natural amino acid tyrosine) and one so-called "peptoid" structure, makes the compound stable against enzymatic degradation and thus suitable for in vivo applications. Since CXCR4 receptors also play an important role in cancer metastasis, derivatives of this compound are also being tested as new agents for imaging and treatment of cancer. The team's "frozen peptoid" displays a 400 to 1500 times higher binding affinity to the CXCR4 ligand compared to other CXCR4-targeting compounds currently under clinical development, including one already involved in the treatment of non-Hodgkin lymphoma and multiple myeloma.

"We are very happy that the specific modifications designed by our team have led to a drug compound that may be useful for treatment of multiple life-threatening diseases," says Prof. Horst Kessler, a senior fellow of the TUM Institute for Advanced Study and "emeritus of excellence" in the TUM Department of Chemistry. "For anti-HIV therapy," adds Prof. Ruth Brack-Werner, a virologist from the Helmholtz Zentrum, "the new compound may provide a drug against particularly aggressive HIV-1 strains that come up in HIV-infected individuals after many years of infection." "We look forward with great enthusiasm to the next preclinical and clinical tests," says Prof. Hans-Jürgen Wester, TUM Chair of Pharmaceutical Radiochemistry. "These compounds offer exciting possibilities."

More information: A Conformationally Frozen Peptoid Boosts CXCR4 Affinity and Anti-HIV Activity. Oliver Demmer, Andreas O. Frank, Franz Hagn, Margret Schottelius, Luciana Marinelli, Sandro Cosconati, Ruth Brack-Werner, Stephan Kremb, Hans-Jürgen Wester, and Horst Kessler. Angewandte Chemie Int. Ed., 2012, 51, 8110-8113. DOI: 10.1002/anie.201202090 Journal reference: Angewandte Chemie International Edition search and more info website Provided by Technical University Munich search and more info website

Read more at: http://medicalxpress.com/news/2012-08-potential-drug-molecule-anti-hiv.html#jCp
« Last Edit: August 13, 2012, 01:19:18 pm by hopeisvague »
201206 351/95000 Started I/T

 


Terms of Membership for these forums
 

© 2024 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.