Welcome, Guest. Please login or register.
April 28, 2024, 02:50:28 pm

Login with username, password and session length


Members
Stats
  • Total Posts: 773307
  • Total Topics: 66349
  • Online Today: 662
  • Online Ever: 5484
  • (June 18, 2021, 11:15:29 pm)
Users Online
Users: 1
Guests: 616
Total: 617

Welcome


Welcome to the POZ Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Do I Have HIV?” posting guidelines. Click here for posting guidelines pertaining to all other POZ community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: Discovery may help defang viruses  (Read 2986 times)

0 Members and 1 Guest are viewing this topic.

Offline J220

  • Member
  • Posts: 587
Discovery may help defang viruses
« on: August 28, 2007, 06:05:55 pm »
From http://live.psu.edu/story/25574 . Not sure if this can apply to HIV vaccine development but since it's a virus it may very well be....and speed up the development of a vaccine in the process. I have fired an email to the researcher in charge of the study asking if it applies t HIV, let's see what he says.


Discovery may help defang viruses

Tuesday, August 28, 2007
--------------------------------------------------------------------------------
 
University Park, Pa. --- Researchers may be able to tinker with a single amino acid of an enzyme that helps viruses multiply to render them harmless, according to molecular biologists who say the discovery could pave the way for a fast and cheap method of making vaccines.

"We have successfully tested this technique with poliovirus," said Craig Cameron, the Paul Berg professor of biochemistry and molecular biology at Penn State. "And we think it is applicable to most other viruses."

Viruses have a simple mission; infect a cell, make more viruses, and then break out of the cell to infect more cells. This calls for fast and efficient multiplication. Viruses do this with the help of an enzyme called polymerase, whose main job is to assist in making more copies of the virus.

Once a virus infects a cell, there is a race against the clock between the virus, which is trying to multiply quickly, and the immune system trying to control the spread. A virus can cause disease and death if it can spread more rapidly than the immune system can neutralize it.

But if the body has been exposed to a vaccine -- weakened form of the virus in this case -- the body can respond more rapidly when it is exposed to the virulent strain. The key to developing vaccines is finding the one strain -- mutation -- that will prime the immune system without causing disease.

The Penn State researchers may have done just that. Cameron and his colleagues, Jamie Arnold and Christian Castro, both research associates, have identified a key amino acid in the polymerase of poliovirus that controls the speed and accuracy with which the virus is able to multiply.

By replacing this key residue with different amino acids, the researchers were able to generate mutants of the virus that are essentially harmless.

"We found that very subtle changes in the chemistry at this location of the polymerase has dramatic effects on weakening the virus," said Cameron, who has a provisional patent on the technique.

When lab mice are infected with these mutant strains of the virus, it takes a lot more of the virus to sicken, or kill the animals. Cameron says tests suggest that some viral strains with specific mutation patterns lead to a form of the virus that cannot sustain itself.

"By altering a single lysine residue, you not only affect the virus' replication, but also the accuracy with which it is copied," he said. "A virus' replication speed and accuracy is optimized; there is a delicate balance. We have defined the optima for poliovirus but where that balance is going to be for different viruses, we do not yet know."

Since all viruses have a similar mechanism regulating their replication, Cameron says the discovery may represent a universal mechanism of weakening other viruses causing diseases such as influenza, SARS, Dengue fever and the West Nile Virus for developing vaccines.

"All standard approaches for vaccine development take years," said Cameron. "It is all a random trial and error process to get an attenuated -- weakened -- virus that may be treated as a potential vaccine candidate. There is no direct method."

Positive strand RNA viruses -- those with only one gene -- such as SARS coronavirus, and hepatitis C virus compound the problem. "The gene makes a protein that gets processed into a lot of different functions," said Cameron. "There is no gene to delete." But these viruses do have an amino acid similar to the residue identified in poliovirus, which can be replaced to produce weak variants. These new strains are quickly neutralized by the immune system, providing protection against the more virulent strains.

The Penn State Scientist says his findings could help avoid the long time it takes to create vaccines, and might help mount a more effective response against ever-changing viruses such as influenza, as well as emerging and re-emerging viruses such as SARS coronavirus, West Nile Virus and Dengue virus.

He added that the technique of quickly creating weak viral strains for use as vaccines could also protect against viruses such as Ebola and smallpox, which might be used as biological weapons.

The Penn State Department of Biochemistry and Molecular Biology is at http://www.bmb.psu.edu/ online.
"Hope is my philosophy
Just needs days in which to be
Love of Life means hope for me
Born on a New Day" - John David

 


Terms of Membership for these forums
 

© 2024 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.