Welcome, Guest. Please login or register.
April 27, 2024, 10:20:02 am

Login with username, password and session length


Members
Stats
  • Total Posts: 773297
  • Total Topics: 66348
  • Online Today: 680
  • Online Ever: 5484
  • (June 18, 2021, 11:15:29 pm)
Users Online
Users: 4
Guests: 601
Total: 605

Welcome


Welcome to the POZ Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Do I Have HIV?” posting guidelines. Click here for posting guidelines pertaining to all other POZ community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: Molecular Root of 'Exhausted' T Cells in Chronic Viral Infection  (Read 3110 times)

0 Members and 1 Guest are viewing this topic.

Offline Cosmicdancer

  • Member
  • Posts: 199
Molecular Root of 'Exhausted' T Cells in Chronic Viral Infection
« on: December 03, 2012, 07:37:26 pm »
A new study shows how cells become "exhausted" in chronic infections such as HIV and the immune system can collapse.  Researchers say the findings suggest new new therapeutical approaches to pursue to prevent exhaustion of virus specific t-cells.

http://www.sciencedaily.com/releases/2012/11/121129143153.htm

ScienceDaily (Nov. 29, 2012) — When you get an acute infection, such as influenza, the body generally responds with a coordinated response of immune-cell proliferation and attack that rapidly clears the pathogen. Then, their mission done, the immune system stands down, leaving a population of sentinel memory cells to rapidly redeploy the immune system in the event of reinfection.

This is why vaccination works, and it's why, in theory at least, people who have had the chicken pox once will never get it again.

But what about chronic infection? In the case of such pathogens as hepatitis C, HIV, and malaria, the body and the pathogen essentially fight to a prolonged stalemate, neither able to gain an advantage. Over time, however, the cells become "exhausted" and the immune system can collapse, giving the pathogen the edge.

Now, a new study by researchers at the Perelman School of Medicine, University of Pennsylvania, is showing just how that happens. The findings also suggest a novel therapeutical approach that might be used to shift the balance of power in chronic infections. The study appears in the November 30 issue of Science.

The team, led by E. John Wherry, PhD, associate professor of Microbiology and Director of the Institute for Immunology, used a mouse model of chronic viral infection to map the T-cell response that arises when the immune system is on an extended war footing. They found that two distinct classes of virus-specific CD8+ T cells -- one expressing high levels of the protein T-bet, the other expressing high levels of the protein Eomes, work together to keep the infection in check.

Specifically, they found that the two cell populations appear to have a progenitor-mature cell relationship. The T-bet-expressing cells appear to function as the progenitor cells -- that is, stem cells. These cells divide both to regenerate and maintain the pool of virus-specific T cells. But they also divide and differentiate to form mature, terminally differentiated Eomes-expressing cells. These cells are more effective at fighting the virus itself, but cannot replicate.

"There's a balance, an equilibrium, which allows you to maintain control over the infection but is insufficient to give you complete clearance," Wherry explains.
These two cell subpopulations tend to confine themselves to different anatomic regions in the infected animals, the researchers found. T-bet-positive cells were found in the blood and spleen, whereas Eomes cells were found in the liver, bone marrow, and gut.

Loss of either subpopulation, which the researchers modeled by deleting one or the other protein, reduces the immune system's ability to fight the infection, leading to a shift in favor of the pathogen.

According to Wherry, these data can help explain the gradual loss of virus-specific T cells observed in such chronic infections as hepatitis C.

"Our data suggest the reason for loss of immune control during some chronic infections is that the long-term pressure on this progenitor-mature cell relationship depletes the progenitor pool," he says.

What's more, the study suggests new therapeutic avenues that can be used to fight, or at least better control, chronic infections. For instance, he says, "If we can maintain these progenitor cells longer, or coax the terminal progeny to divide further, we may be able to shift the balance and maintain control of the infection," he says.

Wherry's lab is now studying candidate molecular pathways to determine their efficacy in controlling, and perhaps modulating, these two T-cell populations.
Penn authors include Michael A. Paley, Pamela M. Odorizzi, Jonathan B. Johnnidis, Douglas V. Dolfi, Burton E. Barnett.

The study was funded by National Institutes of Health grants T32-AI-07324; AI0663445; AI061699; AI076458; AI083022, AI078897, HHSN266200500030C; AI082630, and the Dana Foundation.
Summer, 2007 - &$#@?
November, 2007 - Tested poz, 300,000 vl, 560 cd4
Feb, 2008 - 57,000 vl, 520 cd4, started Atripla
2/2008 - 5/2015 - undetectable on Atripla
May, 2015 - UD, switched to Complera
September, 2015 - UD, 980 cd4, switched to Stribild (Complera interacted with acid reflux medication)
January, 2016 - Stribild, UD, 950 cd4
June, 2016 - UD, 929 cd4

 


Terms of Membership for these forums
 

© 2024 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.