Quantcast

Subscribe to:
POZ magazine
E-newsletters
Join POZ: Facebook MySpace Twitter Pinterest
Tumblr Google+ Flickr MySpace
POZ Personals
Sign In / Join
Username:
Password:
Welcome, Guest. Please login or register.
July 24, 2014, 09:59:59 AM

Login with username, password and session length


Members
Stats
  • Total Posts: 631702
  • Total Topics: 47822
  • Online Today: 236
  • Online Ever: 585
  • (January 07, 2014, 02:31:47 PM)
Users Online

Welcome


Welcome to the POZ/AIDSmeds Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Am I Infected?” posting guidelines. Click here for posting guidelines pertaining to all other POZ/AIDSmeds community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: Researchers develop new method of blocking HIV from entering cells  (Read 1161 times)

0 Members and 1 Guest are viewing this topic.

Offline Cosmicdancer

  • Member
  • Posts: 146
I wish I could summarize this article, but despite reading it a few times, I don't really understand it, but perhaps someone else can explain this research.  It appears researchers believe there's a way to make t-cell membranes more rigid so that HIV cannot easily fuse with them.  The article states that when the GT11 molecule is incorporated into cells, it makes them more rigid, and HIV cannot fuse with the cell membrane, and it appears they have demonstrated this, although it's not clear how they did this. 

http://www.sciencedaily.com/releases/2010/07/100730191616.htm
 
New Cellular 'Armor' Developed to Prevent Infection by AIDS Virus

ScienceDaily (July 31, 2010) — Research by the Consejo Superior de Investigaciones Científicas (CSIC) and led by Mr Félix Goñi, director of the Biophysics Unit at the CSIC-University of the Basque Country Mixed Centre, has led to the development of a novel method of attack against the AIDS virus. The method involves creating a prevention system, i.e. an 'armour' in the cells that are likely to be infected and thus impede the virus from accessing them and starting to act on their immunological system.

The study, which appears in the journal Chemistry & Biology, published by Cell Press, lays down the bases of possible future pharmaceutical drugs that will enable combating the AIDS virus at its initial phase. Participating in the research, apart from Mr Goñi, was a team from the National Biotechnology Centre (CSIC-Universidad Autónoma de Madrid) and another from the Institute of Applied Chemistry of Cataloniaa (CSIC, Barcelona).

The research is based on the regulation of the fluidity of the cell membranes and seeks to avoid the phenomenon known as the fusion of membranes, a consequence of contact between the cell membranes and the membrane of the virus itself.

The membrane is the "coating" of the cell cytoplasm and which protects it from the outside, and which has a structure similar to that of the membranes of the AIDS virus. When both membranes come into contact, and due to the fact that the cell membrane is very "fragile," an orifice is created and fusion occurs -- and a route is opened for the AIDS virus to enter, connect to a specific "receptor" of the cell and commence its viral activity.

What the researchers are seeking with this study is to strengthen the membrane structure, making it more rigid, in order to avoid this fusion of membranes and, thus, the inoculation of the cell by the AIDS virus.

Practically all treatment for the AIDS virus currently being applied is based on halting the progress of the virus once it is inside the host cell. There is but one treatment, commercially known as Enfurvitide, which attempts to stop the virus actually entering the cell. The research published in Chemistry & Biology comes to the same conclusion, but by a totally different and novel route.

"For the cell membranes and the virus to come together and this orifice be opened to allow the entrance of the virus, the membranes have to have a certain degree of fluidity, of mobility. We discovered a procedure to make the cell membranes more rigid. This could well give rise to a new pharmaceutical drug which makes the membranes more rigid and impede the entrance of the AIDS virus. Instead of the membrane being flexible, a kind of armour is established which makes the cell impenetrable," explained Félix Goñi.

The research started three years ago and has employed various techniques in the field of chemistry and molecular biology.

At the Institute of Applied Chemistry of Catalonia (CSIC, Barcelona), Ms Gemma Fabriàs has synthesised the GT11 molecule by means of organic chemistry synthesis techniques. Mr Santos Mañes, from the National Biotechnology Centre, studied the viral infection of the cells, and from the Biophysics Unit at the CSIC-University of the Basque Country work has been undertaken at molecular level to demonstrate that there are changes in the rigidity of the membranes when the GT11 molecule is incorporated into them, and that when the membranes are more rigid the virus cannot fuse with the cell membrane and, thus, from penetrating the cell. A highly important role was also placed by Mr José Luis Nieva, from the Biophysics Unit, in studying this fusion of the membranes induced by the AIDS virus.

This scientific discovery by this consortium represents, in the opinion of Mr Goñi, "a completely new means for attacking the virus, and which makes this original."

"There is medication, and which is working very well, to avoid the propagation of the virus once it is inside the cell. But to impede this inoculation in the first place, only one product (Enfurvitide) exists, but this drug is based on a completely distinct principle. The idea of modifying the rigidity of the membranes is completely new and also demonstrating that, by equipping these membranes with greater rigidity, the AIDS virus cannot penetrate," stated Mr Goñi. This same strategy may well serve for other viruses with membrane, such as, for example, the flu virus.

Here's a summary of the article that appeared in Chemistry and Biology.

http://www.cell.com/chemistry-biology/fulltext/S1074-5521(10)00214-0

Here's a pdf of the actual article if anyone wants to try to wade through it.

http://download.cell.com/chemistry-biology/pdf/PIIS1074552110002140.pdf?intermediate=true
Summer, 2007 - &$#@?
November, 2007 - Tested poz, 300,000 vl, 560 cd4
Feb, 2008 - 57,000 vl, 520 cd4, started Atripla
June, 2008 - undetectable, 612 cd4
January, 2009 - undetectable, 670 cd4
May, 2009 - undetectable, 593 cd4
Sept, 2009 - 83 vl, 763 cd4, 34%
Dec, 2009 - undetectable, 889 cd4, 32%
April, 2010 - undetectable, 860 cd4, 31%
October, 2010 - undetectable, 800 cd4, 38%
April, 2011 - undetectable, t-cell test not done
October, 2011 - undetectable
April, 2012 - undetectable, 850 cd4, 39%
November, 2012 - undetectable, 901 cd4, 41%
April, 2013 - undetectable, 846 cd4, 36%
October, 2013 - undetectable
May, 2014 - undetectable, 784 cd4, 48%

 


Terms of Membership for these forums
 

© 2014 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.