Quantcast

Subscribe to:
POZ magazine
E-newsletters
Join POZ: Facebook MySpace Twitter Pinterest
Tumblr Google+ Flickr MySpace
POZ Personals
Sign In / Join
Username:
Password:
Welcome, Guest. Please login or register.
August 21, 2014, 10:43:55 PM

Login with username, password and session length


Members
Stats
  • Total Posts: 635550
  • Total Topics: 48215
  • Online Today: 271
  • Online Ever: 585
  • (January 07, 2014, 02:31:47 PM)
Users Online

Welcome


Welcome to the POZ/AIDSmeds Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Am I Infected?” posting guidelines. Click here for posting guidelines pertaining to all other POZ/AIDSmeds community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: genetically engineer immune cells into potent weapons for battling HIV  (Read 1779 times)

0 Members and 1 Guest are viewing this topic.

Offline datdude

  • Member
  • Posts: 71
Einstein researchers genetically engineer immune cells into potent weapons for battling HIV
March 4, 2008 (Bronx, NY) – By outfitting immune-system killer cells with a new pair of genes, scientists at the Albert Einstein College of Medicine of Yeshiva University transformed them into potent weapons that destroy cells infected with HIV, the virus that causes AIDS. Their novel strategy of genetically engineering immune cells to redirect their infection-fighting ability toward killing HIV-infected cells could lead to an entirely new approach for combating AIDS and other viral diseases. The findings appear in the March issue of the Journal of Virology.

After someone is infected with HIV, a subgroup of their immune cells known as CD8 cytotoxic T lymphocytes, or CTLs, recognize cells infected with HIV and kill them before they become HIV-producing factories. This CTL activity initially keeps the infection in check.

But then—largely because these CTLs may not bind tightly enough to the infected cells or because HIV mutates so rapidly—the virus typically evades and ultimately overpowers the immune system, leading to an increase in viral load that, in the absence of drug therapy, results in AIDS. However, a very small percentage of HIV-infected people known as elite controllers manage to suppress HIV infection for many years.

“Certain of the CTLs of elite controllers may be genetically equipped to bind tightly to HIV-infected cells and destroy them and thereby suppress the infection indefinitely,” says Dr. Harris Goldstein, senior author of the study and Director of the Einstein/Montefiore Center for AIDS Research. “Our idea,” says Dr. Goldstein, “was first to identify the elite controllers’ “super” CTLs and to isolate the genes that enable these cells to bind tightly to HIV-infected cells and kill them efficiently; then we would transfer these genes into CTLs that do not recognize HIV-infected cells and convert them into potent killers of those cells.”

After infecting a cell, HIV instructs it to make viral proteins. Tiny bits of these proteins, known as peptides, are displayed on the surface of the infected cell—the cell’s way of signaling the immune system that it is infected. Detecting virus-infected cells so they can then be eliminated is the job of CTLs and the protein molecules, known as T-cell receptors, that jut from their surface.

If a CTL’s T-cell receptor has the right amino acid sequence, it will recognize the HIV peptide on the infected cell as foreign--prompting the CTL to multiply and attack the infected cell. But all too often, this battle between activated CTLs and HIV-infected cells ends badly. Why, then, are super CTLs of elite controllers so effective in killing HIV-infected cells"

The explanation, the Einstein researchers postulated, is that these CTLs express T-cell receptors that either have a knack for recognizing viral peptides that tend not to mutate, or they bind extremely tightly to HIV-infected cells, enabling the elite controllers to keep their HIV infections under control.

A CTL’s T-cell receptor, which is as unique for each CTL as a person’s fingerprint, consists of two “chains,” alpha and beta. To obtain the blueprint for making exceptionally potent HIV-specific T-cell receptors, the researchers isolated the genes that code for each of the two “chains” from the potent HIV-specific CTL. Then, as a way to efficiently insert both genes into “naïve” CTLs (from people not infected with HIV), they developed an efficient delivery system in which the genes were combined and packaged inside a special type of virus, called a lentivirus. The lentiviruses then inserted these genes into the chromosomes of naïve CTLs obtained from a naïve donor’s blood and reprogrammed them into potent HIV-specific CTLs.

“We demonstrated that these genetically reprogrammed CTLs have very strong activity in terms of killing HIV-infected cells in both test tubes and an animal model,” says Dr. Goldstein. In some of the animal studies, for example, the researchers injected mice with both HIV-infected human cells and with reprogrammed naïve CTLs into which the HIV-recognizing T-cell receptor genes had been inserted using the lentiviral delivery system. One week later, when the researchers looked for HIV-infected human cells in the animals, they found that the infected cells had virtually been eliminated.

Dr. Goldstein notes that this study was done using genes for just a single CTL T-cell receptor. “To make this strategy even more effective, we’re now in the process of isolating a “cocktail” of CTL receptor genes that are specific for many different HIV peptides—an approach analogous to today’s combination drug therapy for treating HIV infection,” says Dr. Goldstein. “Ultimately, we’d like to remove CTLs from patients, convert them into potent HIV-specific CTLs by inserting a variety of HIV-specific CTL receptor genes, and then re-infuse these fresh, genetically reprogrammed CTLs back into patients. By reinforcing the immune system in this way, we hope to turn the tide of battle against HIV in favor of people infected with the virus.”

Offline J220

  • Member
  • Posts: 587
“We demonstrated that these genetically reprogrammed CTLs have very strong activity in terms of killing HIV-infected cells in both test tubes and an animal model,” says Dr. Goldstein. In some of the animal studies, for example, the researchers injected mice with both HIV-infected human cells and with reprogrammed naïve CTLs into which the HIV-recognizing T-cell receptor genes had been inserted using the lentiviral delivery system. One week later, when the researchers looked for HIV-infected human cells in the animals, they found that the infected cells had virtually been eliminated...

Wow this is huge. Hope it moves fast to trials!
"Hope is my philosophy
Just needs days in which to be
Love of Life means hope for me
Born on a New Day" - John David

Offline Magnus

  • Member
  • Posts: 63
This one sounds fantastic alright!   http://www.sciencedaily.com/releases/2008/03/080306190905.htm

But how many years before it progresses to human trials.........

I have to say, we are living in a very exciting time with so many innovative new approaches in the Universities and research centers, but it just seems painfully slow from the time you hear about a new development to the time you hear any updates/ progress and some great sounding ideas just fall off the map.

But at least the big Pharma companies keep pumping out new and better drugs, making our quality of life better until something ground breaking comes along. ;D

 


 


Terms of Membership for these forums
 

© 2014 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.