Welcome, Guest. Please login or register.
April 25, 2024, 11:37:24 am

Login with username, password and session length


Members
  • Total Members: 37652
  • Latest: Han2024
Stats
  • Total Posts: 773289
  • Total Topics: 66348
  • Online Today: 690
  • Online Ever: 5484
  • (June 18, 2021, 11:15:29 pm)
Users Online
Users: 1
Guests: 611
Total: 612

Welcome


Welcome to the POZ Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Do I Have HIV?” posting guidelines. Click here for posting guidelines pertaining to all other POZ community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: How Stealthy HIV Protein Gets Into Cells  (Read 3587 times)

0 Members and 1 Guest are viewing this topic.

Offline datdude

  • Member
  • Posts: 71
How Stealthy HIV Protein Gets Into Cells
« on: March 20, 2008, 04:44:49 am »
How Stealthy HIV Protein Gets Into Cells
ScienceDaily (Mar. 20, 2008) — Scientists have known for more than a decade that a protein associated with the HIV virus is good at crossing cell membranes, but they didn’t know how it worked. A multidisciplinary team from the University of Illinois has solved the mystery, and their findings could improve the design of therapeutic agents that cross a variety of membrane types.

The TAT protein transduction domain of the HIV virus has some remarkable properties. First, it is a tiny part of the overall TAT protein, containing only 11 amino acids. Second, and more important, it has an uncanny knack for slipping across membranes, those lipid-rich bags that form the boundaries of cells and cellular components and are designed to keep things out.

“TAT is extremely good at getting through cell membranes,” said materials science and engineering professor Gerard Wong, who led the new study. “You can attach TAT to almost anything and it will drag it across the membrane. It can work for virtually all tissues, including the brain.”

The TAT protein’s versatility makes it desirable as a drug-delivery device. It is already being used for gene therapy. (TAT is not involved in transmitting the HIV virus; it only aids the passage of other materials across the membranes of infected cells.)

Because it has so many potential uses, scientists have long endeavored to understand the mechanism that allows the TAT protein to work. But their efforts have been stymied by some baffling observations.

Six of its 11 residues are arginine, a positively charged amino acid that gives the protein its activity.

Most membranes are composed of a double layer of neutral, water-repellent lipids on their interiors, with hydrophilic (water-loving) “head groups” on their internal and external surfaces.  The head groups generally carry a mildly negative charge, Wong said. Since opposites attract, it made sense to the researchers that the positively charged TAT protein would attract the negatively charged head groups on the surface of the membranes. This attraction could deform the membrane in a way that opened up a pathway through it.

If a short, positively charged protein was all that was needed for TAT to work, the researchers thought, then any positively charged amino acid should do the trick. But when they replaced the arginine in the protein with other positively charged amino acids, it lost its function. Clearly, a positive charge was not enough to make it work.

To get a better picture of the interaction of TAT with a variety of membranes, the researchers turned to confocal microscopy and synchrotron x-ray scattering (SAXS). Although sometimes used in biological studies, SAXS is more common to the fields of physics or materials science, where the pattern of X-ray scattering can reveal how atomic and nano scale materials are structured.

The researchers found that adding the TAT protein to a membrane completely altered its SAXS spectrum, a sign that the membrane conformation had changed. After analyzing the spectrum, the researchers found that TAT had made the membranes porous.

“The TAT sequence has completely reconstructed (the membrane) and made it into something that looks a little bit like a sponge with lots of holes in it,” Wong said.

Something about the TAT protein had induced a “saddle splay curvature” in the membrane. This shape resembles a saddle (like that of a Pringles potato chip), giving the openings, or pores, a bi-directional arc like that seen inside a doughnut hole.

The newly formed pores in the membrane were 6 nanometers wide, large enough to allow fairly sizeable proteins or other molecules to slip through. The pores would also make it easier for other biological processes to bring materials through the membrane.

Further analysis showed that the arginine was interacting with the head groups on the membrane lipids in a way that caused the membrane to buckle in two different directions, bringing on the saddle splay curvature that allowed the pores to form.

When another positively charged amino acid, lysine, was used instead of arginine, the protein bent the membrane in one direction only, forming a shape more like a closed cylinder that would not allow materials to pass through.

These findings will aid researchers hoping to enhance the properties of the TAT protein that make it a good vehicle for transporting therapeutic molecules into cells, Wong said.


 


Terms of Membership for these forums
 

© 2024 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.