Welcome, Guest. Please login or register.
April 19, 2024, 03:59:30 pm

Login with username, password and session length


Members
  • Total Members: 37644
  • Latest: Aman08
Stats
  • Total Posts: 773220
  • Total Topics: 66338
  • Online Today: 716
  • Online Ever: 5484
  • (June 18, 2021, 11:15:29 pm)
Users Online
Users: 0
Guests: 607
Total: 607

Welcome


Welcome to the POZ Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Do I Have HIV?” posting guidelines. Click here for posting guidelines pertaining to all other POZ community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: Researchers Identify Novel Type of Antibody That Potently Inhibits HIV Infection  (Read 3282 times)

0 Members and 1 Guest are viewing this topic.

Offline MYSTERY

  • Member
  • Posts: 186
A small antibody fragment that is highly effective in neutralizing the human immunodeficiency virus (HIV) by preventing the virus from entering cells has been identified by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health (NIH). This finding may provide insight into the development of new treatments against HIV and other viruses, hopefully in the not too distant future. The study appears online Oct. 20, 2008, in Proceedings of the National Academy of Sciences.

Treating HIV-infected individuals is difficult because the virus is able to mutate and become resistant to antiretroviral drugs. "In the United States, it is estimated that more than 50 percent of patients who are receiving antiretroviral therapy for their HIV infection carry strains of the virus that are resistant to treatment with at least one of the currently available antiretroviral drugs," said NCI Director John E. Niederhuber, M.D. "The development of new drugs against HIV is an urgent public health need."

Antibodies are large proteins naturally produced by the immune system to help fight disease-causing foreign invaders, such as viruses and bacteria. Although the general structure of all antibodies is very similar, a small region at the tip of the protein is extremely variable, allowing millions of antibodies, characterized by slightly different tip structures, to exist and bind to different targets, known as antigens. Previous research has shown that reducing antibodies to the smallest independently functional fragment, known as a variable domain, can extend their utility as therapeutic agents. These fragments, called domain antibodies (dAbs), retain the variable tip structure and, therefore, the antigen-binding specificity of the parent antibody. Because of their small size, they are able to access targets that cannot be reached by much larger, whole antibodies.

In an earlier study, the researchers identified a unique antibody, called m0, while screening a large library of antibodies directed against the HIV protein, Env (also known as gp120). The library contained the variable portions of antibodies that can bind to Env antigens. "We found an antibody fragment that exhibited the ability to neutralize HIV and had properties that allowed us to construct a novel library containing dAbs directed against HIV," said Dimiter S. Dimitrov, Ph.D., of NCI's Center for Cancer Research.

Based on m0's framework, the leading author of the study, Weizao Chen, Ph.D., constructed a very large library of dAbs (25 billion different dAbs), screened it against Env proteins from two different strains of HIV, and identified a dAb, m36, that bound strongly to different Env proteins and blocked the infectivity of a broad range of HIV strains. The researchers believe that m36 represents the first human dAb against HIV reported.

"The antibody fragment that we identified, m36, could have potential in the development of a therapeutic drug that inhibits HIV," said Dimitrov. "Further research with this molecule also could offer insight about how the virus infects cells and how it evades neutralization by the immune system."

The research team is working to test various combinations of m36 with other inhibitors that may be effective against HIV. The team is also attempting to construct more potent versions of m36. Partnership with industry could speed the ability to evaluate m36 as a potential treatment for HIV. Dimitrov's team is also using this approach to identify dAbs against cancer and other disease-related antigens.

For more information on Dr. Dimitrov's research, please go to http://ccr.cancer.gov/staff/staff.asp?profileid=5749.

Atheist don't believe in GOD, but GOD believes in them and loves them. Never let the failure of man conflict with your love of GOD.

 


Terms of Membership for these forums
 

© 2024 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.