Welcome, Guest. Please login or register.
April 25, 2024, 08:26:58 am

Login with username, password and session length


Members
  • Total Members: 37652
  • Latest: Han2024
Stats
  • Total Posts: 773289
  • Total Topics: 66348
  • Online Today: 690
  • Online Ever: 5484
  • (June 18, 2021, 11:15:29 pm)
Users Online
Users: 1
Guests: 616
Total: 617

Welcome


Welcome to the POZ Community Forums, a round-the-clock discussion area for people with HIV/AIDS, their friends/family/caregivers, and others concerned about HIV/AIDS.  Click on the links below to browse our various forums; scroll down for a glance at the most recent posts; or join in the conversation yourself by registering on the left side of this page.

Privacy Warning:  Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If you are HIV positive and disclose this in our forums, then it is almost the same thing as telling the whole world (or at least the World Wide Web). If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.

  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.

  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.

  • Forums members must behave at all times with respect and honesty. Posting guidelines, including time-out and banning policies, have been established by the moderators of these forums. Click here for “Do I Have HIV?” posting guidelines. Click here for posting guidelines pertaining to all other POZ community forums.

  • We ask all forums members to provide references for health/medical/scientific information they provide, when it is not a personal experience being discussed. Please provide hyperlinks with full URLs or full citations of published works not available via the Internet. Additionally, all forums members must post information which are true and correct to their knowledge.

  • Product advertisement—including links; banners; editorial content; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from POZ.

To change forums navigation language settings, click here (members only), Register now

Para cambiar sus preferencias de los foros en español, haz clic aquí (sólo miembros), Regístrate ahora

Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: New compound binds to CCR5, CXCR4 and blocks reverse transcriptase  (Read 2628 times)

0 Members and 1 Guest are viewing this topic.

Offline Cosmicdancer

  • Member
  • Posts: 199
Since HIV emerged in the '80s, drug 'cocktails' transformed the deadly disease into a manageable one. But the virus is adept at developing resistance to drugs, and treatment regimens require tweaking that can be costly. Now scientists are announcing new progress toward affordable drugs that could potentially thwart the virus's ability to resist them.

"This disease has gone on for over three decades," says Dennis Liotta, Ph.D. "We've got to try to find new solutions. Even with the 30 approved drugs that we have, and even when you completely suppress viral replication, we still see disease progression."

So Liotta's team at Emory University decided to tackle a seemingly intractable problem that had been plaguing efforts to defeat the virus.

To replicate, Liotta explains, HIV fuses with human immune cells by interacting with key proteins. Its genetic contents subsequently spill inside the immune cells, and the viral proteins then hijack the cellular machinery to make copies of themselves.

One drug company (Pfizer) has developed a compound that blocks HIV's interaction with one of those proteins, a co-receptor called CCR5. But the virus can also use a second co-receptor, CXCR4, to enter cells. If a drug targets just CCR5, a more virulent strain that favors CXCR4 could emerge over time, says Liotta.

In theory, drugs targeting CXCR4 would be an effective addition to the arsenal against HIV. But interfering with that protein, which regulates several of the body's inflammatory responses, could lead to serious side effects.

"With a chronic infection like HIV, it's very challenging to take a drug every day of your life if you have significant side effects," Liotta says. "This is a very high bar. No drug that functions as a CXCR4 antagonist for HIV has gotten over that bar."
Liotta's team decided to search for compounds that might be able to bind both CCR5 and CXCR4 at the same time, while avoiding serious side effects.

"Essentially, we took a step back and said instead of creating yet another cocktail of multiple drugs to stop the different mechanisms of HIV, we thought we could design one that hit multiple targets at once," says Anthony Prosser, a graduate student in Liotta's lab. If a new drug could block HIV entry by interfering with CCR5 and CXCR4, it could be paired with a traditional cocktail targeting other stages of the virus lifecycle for an even more robust treatment.

Prosser came up with a simple, inexpensive method to synthesize compounds that likely would bind both co-receptors. Lab tests identified the most effective ones, and the group's partners at pharmaceutical company Bristol-Myers Squibb found that the compounds also blocked HIV reverse transcriptase, an enzyme that's key to the virus's ability to copy itself.

"The agents were active against CCR5, CXCR4 and HIV reverse transcriptase," Liotta says. "That was unprecedented. Also, they don't perturb any of the CXCR4 signaling pathways that lead to inflammation."

An additional benefit of this approach is that the compounds target proteins on human cells. Most HIV drugs target viral proteins, but because they often mutate when exposed to antiretroviral agents, resistance can develop quickly. When that happens, patients have to switch to a new drug combination that can be less effective than the previous treatment. Human proteins rarely mutate to a significant extent, so HIV will be far less likely get around drug combination therapies that include a CXCR4/CCR5 inhibitor, Liotta explains. Since these agents are inexpensive to prepare, they could potentially keep treatment affordable for millions, particularly in the developing world.

Now the lab is working to further control the activity of these compounds, boost their potency and minimize their potential toxicity.

"We've got a long way to go, but this is a very exciting finding," Liotta says.
The work was funded by Liotta's earlier work on HIV drug emtricitabine that resulted in a sale by Emory University to Gilead Sciences.

http://www.sciencedaily.com/releases/2015/03/150319143319.htm


Summer, 2007 - &$#@?
November, 2007 - Tested poz, 300,000 vl, 560 cd4
Feb, 2008 - 57,000 vl, 520 cd4, started Atripla
2/2008 - 5/2015 - undetectable on Atripla
May, 2015 - UD, switched to Complera
September, 2015 - UD, 980 cd4, switched to Stribild (Complera interacted with acid reflux medication)
January, 2016 - Stribild, UD, 950 cd4
June, 2016 - UD, 929 cd4

 


Terms of Membership for these forums
 

© 2024 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.